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An extra degree of freedom is introduced in the well-known diffusion-limited aggregation model. The
growth entities are “spins” taking, e.g., two states that are coupled via a physically relevant interaction
potential responsible for a competition process between the two components. The presence of an exter-
nal field favoring one spin species over the other is also considered. This model leads to a wide variety of
kinetic processes and morphologies distributed in a “phase diagram” of both growth control parameters,
i.e., the coupling energy and the field strength. The Brownian motion of the spins leads to fractal-like
structures with a fractal dimension varying from 1.68+0.02 to 1.99+0.01 depending upon the growth
parameters. A physical basis is presented to describe the new kinetic processes. The spreading and
geometry of the two components in fractal clusters have also been investigated. The earlier stages of
growth are driven by a dominating spin component. This finite-size process is found to imply a drastic
change of the physical and geometrical properties of the cluster during growth history. For large clus-
ters the fractal branches can be divided into segments of the same spin species having a characteristic
coherence length £. This length £ is found numerically to scale as a power law of the segment mass with
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a critical exponent 4 =1.2%0.1.

PACS number(s): 68.70.+w, 61.43.Hv, 61.50.Cj, 05.50.+q

I. INTRODUCTION

For the past 50 years, kinetic growth models have re-
ceived a great deal of attention because of the set of
universality classes in which they belong and the natural
processes which they generate [1]. Growth models are
studied in many domains of science such as gelation [1],
percolation [2], crystal growth [3], fracture [4], sedimen-
tation [5], or dielectric breakdown [6].

The most simple one is the Eden model [7,8]. In this
model, the growth rule consists of selectively placing a
particle on an unoccupied site of a lattice in the immedi-
ate neighborhood, the so-called “perimeter,” of a cluster
of identical particles. A more interesting model is the
“diffusion-limited aggregation” (DLA) model introduced
in 1981 by Witten and Sander [9]. It generates aggrega-
tion of particles in a cluster through a Brownian motion.
Diffusion limited aggregation provides a basis for under-
standing a large range of natural pattern formation phe-
nomena [9-14]. Diffusion limited aggregation has led to
many generalizations and is certainly the most studied of
the growth models. Many questions about such kinetic
growth models remain open [12]. A theoretical “physi-
cal” understanding of the DLA growth is still a challenge
[13] for the future.

Usually, natural systems are, however, constituted by
entities taking different states. E.g. copolymers are ma-
cromolecules made of two kinds of monomers [15]. Some
bacterian cells like salmonella have some gene taking two
states (“on” or “off’) [16]. It is, thus, of interest to gen-
eralize the kinetic growth models in order to study the
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impact of a competition between physically different enti-
ties on the kinetic processes.

In previous work [17], we have introduced an extra de-
gree of freedom in the classical Eden model by replacing
the identical particles by scalar spins o; taking two states
(up or down). The introduction of a competition between
the two components leads to a wide variety of cluster
types in presence of an external field [17]. It has also
been found that both a geometrical and a physical ““tran-
sition” occur in the magnetic Eden model (MEM) at the
same growth parameter values [18]. These critical
spreading phenomena, which are of finite-size origin, are,
however, of interest because all natural systems are finite:
e.g., bacterian colonies contain no more than ten
thousand cells.

Recently, an interesting variant of DLA was imagined
where geometrically different element aggregates, i.e.,
particles of different sizes, are taken into account [19].
See, also, Refs. [20] and [21]. In the latter work, sticking,
rearrangement, and evaporation rates compete with each
other. In all cases, models are concerned by the transi-
tion from dense branching to dendritic morphology.

The model presented here is quite different.
Specifically, herein, we introduce in the DLA model an
internal degree of freedom, i.e., a spin taking two states.
We will show that for finite-size systems the “quenching”
of the degree of freedom on the cluster leads to branching
or compactness but moreover to combined geometric and
physical “transitions™ at size dependent critical values.
Our work leads to an extension of studies on growth
models and add to the wide field of localized spin statisti-
cal mechanics, and, thus, seems to open up fields and
ways for studying heterogeneous growth.

In the next section, we define such a DLA model. In
Sec. III, the processes and the geometrical properties of
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the global shape of the clusters are studied numerically
and discussed. In Sec. IV, the internal structure of the
clusters and the effect of the competition is discussed
with the help of numerical work. A brief discussion
serves as a conclusion in Sec. V.

II. THE MAGNETIC DLA MODEL

The “magnetic diffusion-limited aggregation” (MDLA)
model is defined by the aggregation of spins moving to-
ward a cluster through a Brownian motion, as in the orig-
inal DLA model. On a two-dimensional square lattice
with lattice spacing a, the growth rule is defined by the
following steps.

(i) An initial spin o, (up or down) is dropped on a
“seed site.” The extension of this monoparticle cluster is
rmax = 1'

(ii) A diffusing, up or down, spin is dropped onto a cir-
cle of radius r,, +5a, centered on the seed site.

(iii) A choice is then made for both the next site and
the next state orientation of the diffusing spin, as the spin
is allowed to flip or not flip. The probabilities of jumping
to one of the four neighbor sites are defined as propor-
tional to exp(—ABE), where ABE is the local gain of the
dimensionless Ising energy between the initial and the
final states defined by

—_B
BE=—=

201'01'_22]‘1‘2‘71" 1)
(i,j) i

in which the first summation occurs only for the nearest
neighbor pairs (i,j) while the second sum runs over all
spins of the cluster. J and H can be considered to be an
exchange integral and an external magnetic field, while 8
is a parameter such that BJ and BH are dimensionless.
The probabilities of the eight possible configurations for
each jump are renormalized and one specific
configuration is chosen through a random number gen-
erator.

(iv) If the spin moves outside a circle of radius 3r
centered on the seed site, the spin is removed from the
process and one returns to step (ii). If the spin jumps
onto a perimeter site, i.e., an empty site connected to a
spin of the cluster, it sticks immediately on the cluster
and the next diffusing spin is launched (step ii). Then the
value of r,, is adapted to the largest distance between
the farthest cluster site, and the seed site. However, if
the spin jumps toward a neighboring site of the perimeter
or to any other unconnected site, a new step (iii) is at-
tempted.

(v) The launching and diffusing procedures are repeat-
ed until a desired number N of spins frozen on the cluster
is reached.

The first term of Eq. (1) describes a short-range cou-
pling interaction between nearest neighbor spins. This
controls, in fact, the competition between the two spread-
ing components into the clusters. The second term
defines a dimensionless energy for the orientation of the
spins in a magnetic field, favoring a spin species over the
other one. Thus, the only two growth parameters are BJ
and BH.

One should note that the motion of the diffusing spin is

Brownian when it moves toward the cluster, as for the
classical DLA model. However, if the spin reaches a
neighboring site of the perimeter, the diffusion is con-
trolled by the local “magnetic” configuration on the sur-
face of the cluster [see steps (iii) and (iv)]. The state of
the alternative spin is only determined by the last step.
After being glued on the cluster, a spin is not allowed to
flip in order to reorganize its direction with the orienta-
tion of its neighbor spins. The growth process is irrever-
sible and non-Markovian since the asymptotic
configuration probability depends on the initial state (see
also Sec. IV below).

The model could be used to simulate, or describe, elec-
trodeposition of two atomic species, fracture of hetero-
geneous media, binary immiscible species, ferrofiuid
motion in porous media, etc.

III. GEOMETRICAL PROPERTIES
OF MDLA CLUSTERS

The MDLA model conserves the essence of the classi-
cal DLA model but it presents some important
differences with respect to the Witten and Sander model.
Even though J and H are ‘“‘energies,” the MDLA model
is still a purely kinetic growth model because the
diffusion and growth are driven by the probabilities
exp(BJ) and exp(SH). But these probabilities lead to ma-
jor differences. The model takes into account semi-long-
range correlations, i.e., configurations on distances longer
than nearest neighbor ones. In the neighboring of the
perimeter, i.e., for next nearest neighbors of the cluster
sites, the sticking and diffusing probabilities already
“sense” the cluster, leading to more constraints than in
the DLA process [22]. One should note that 17 possible
perimeter site configurations of interest are available on
the two-dimensional square lattice, and that they are dis-
tributed among seven sticking probability levels, noted as
P, to P;. The configurations and the associated probabil-
ity levels, as function of 8J and BH, are shown in Fig. 1.

Equating the seven probability levels to each other
leads to 12 linear equations between BJ and BH, with
BJ =0 and BH=npJ /2, where n is an integer varying
from —5 to 5. (In contrast, the MEM was determined by
16 linear equations [17].) The solutions determine boun-
daries between 24 regions in the(BJ,BH) plane where the
growth processes on the perimeter differ from each other.
Along the BJ =0 axis, the spins are decoupled and the
model simply generates the DLA process. The processes
and morphologies are symmetric with respect to the
BH =0 axis. In the upper-half plane exhibited in Fig. 2,
the regions are labeled AF and F for BJ <0 and BJ >0,
respectively, and numbered from 1 to 6 in order of in-
creasing field. Typical clusters of 3000 spins, simulated in
the various regions of the (B8J,8H) diagram, are shown in
Fig. 3.

In the whole ferromagnetic interaction regions F1-F6
of the diagram, the structure of the MDLA clusters is
DLA-like but is already more extended and less side
branched than a DLA cluster [see Fig. 3(b)]. In the AF1
region, the same cluster morphology as in F1-F6 regions
is observed. In the AF?2 region, the dendritic structure is
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FIG. 1. Probability of sticking growth and related perimeter
configurations in the 2D magnetically controlled diffusion-
limited aggregation model.
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FIG. 2. Upper-half plane of the phase diagram of the mag-
netically controlled diffusion-limited aggregation model.

still conserved but an important thickening of the
branches is observed. This thickening leads to a more
moderate extension of the cluster. In the AF3 region,
compact structures are generated. However, these clus-
ters are provided with unusual (for DLA internal lacunes
and channels [see Fig. 3(e)]. In the AF4 to AF6 regions,
“Eden treelike” (noncompact) structures [23] are generat-
ed [see Fig. 3()].

DLA

AF1

200 lattice units

200 lattice units

200 Jattuce units

\J

AF2

AF3 AF4-5-6

FIG. 3. Typical MDLA clusters of 3000 spins grown from an up spin as seed in various regions of the diagram of Fig. 2.
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We have simulated 50 clusters of 3000 spins at various
BJ and BH parameters in each region of the diagram. The
cluster fractal dimension [24] is evaluated by the radius
of gyration method [25]. As in the Witten and Sander
simulations [9], the number of spins which has been used
seems to be sufficient to give a good estimate of D . Frac-
tal dimensions for each region at specific parameter
values are given in Table I. We have found
D,=1.71£0.01 for decoupled spins, on the BH axis. This
is, of course, in good agreement with the usually reported
fractal dimension of DLA clusters [9-14]. The fractal
dimension D in the other regions takes different values
ranging from 1.68%0.02 to 1.9940.01 (Table I).

The cluster growth processes, as determined by the
probabilities P; to P;, can be explained as follows. A
magnetic field tends to enhance the effect of the positive
coupling between spins because the field encourages the
growth of a specific spin species. In the fjords and chan-
nels, the motion is still Brownian but in the neighborhood
of the perimeter, the probability of sticking to the cluster
becomes high, and, in addition, the high probability sites,
close to the launching circle, are more favored than the
internal sites [26,27]. This explains the structure of
MDLA clusters in the ferromagnetic region, as a DLA-
like structure with D,=1.7 which is approximately in-
dependent of BJ and BH. In these F1-F6 regions, the
probability P, always dominates the growth process.

However, in the BJ <0 region, the coupling and field
effects are in conflict. This leads to a wide variety of pro-
cesses and morphologies. In the AF1 region, the proba-
bility P, always dominates the growth process and leads
to open antiferromagneticlike clusters. The probability
P,, corresponding to pure DLA growth, is the smallest
one. Because the field is not high enough to break the an-
tiferromagnetic order in the AF1 region, i.e., the J cou-
pling effect dominates, the process is closely related to
that which occurs in the ferromagnetic F1 to F6 regions.

In the AF?2 region, the relevant probabilities for stick-
ing a spin onto the cluster are different from those in
AF1. In AF2, the probabilities Ps of sticking on the
tip-perimeter sites and controlling the sticking of only up
spins is much smaller than the probabilities for jumping

TABLE 1. Fractal dimension D, of the spin clusters in the
various growth regions at specific SJ-BH parameter values.

Region BJ BH D,
DLA = VBH 1.71£0.01
F1 4 1 1.70+0.01
F2 4 3 1.69+0.01
F3 4 5 1.71£0.01
F4 4 7 1.70+0.01
F5 4 9 1.71+0.02
Fé6 4 11 1.72+0.01
AF1 —4 1 1.68+0.02
AF2 —4 3 1.70+0.01
AF3 —4 5 1.80+0.02
AF4 —4 7 1.95+0.01
AFS —4 9 1.98+0.02
AF6 —4 11 1.99+0.01

to unconnected sites. Thus, internal perimeter sites are
more favored than tip sites in the AF2 growth region.
Configurations 4, 9, and 17, favoring down spin sticking,
occur most often. This results in a thickening of the
branches as seen in Fig. 3(d).

In the AF3 region, the probabilities of sticking close to
a spin of the same species, which has been oriented in the
field, are small. The diffusing spins have a tendency to
wander for a long time before freezing on the cluster.
The wandering appears as if the whole “surface” is visit-
ed and this leads to more compact clusters. The D, value
becomes 1.801+0.02 (Table I). It is obviously quite
different from the ordinary DLA value. The computing
times are also very long. By decreasing 3/ and staying in
this region, we have noted very low sticking probabilities
leading to very long computing times.

In AF4 to AF6 regions, the field dominates the cou-
pling, and only up spin configurations are favored. The
sticking probabilities, P;, P;, and Ps are also smaller
than those favoring the diffusion process. Sticking on the
tip-perimeter sites, corresponding to configurations 1, 3,
6, and 10, is more favorable than sticking on other perim-
eter sites. This process is, thus, similar to dielectric
breakdown [6] and Eden tree [23] models. We obtain the
same D,~2 values and structures as for these models
indeed.

In summary, the kinetics of DLA is found to be sensi-
tive to the introduction of an extra degree of freedom. A
wide variety of processes and obviously fractal-like struc-
tures can be, thus, generated and understood with this
model.

IV. THE SPECIFIC CASE BH =0

In this section, we study more precisely the internal
competition between the two spin species when the pro-
cess is driven essentially by the first term of Eq. (1), i.e.,
we let BH =0 in the following. For a negative coupling
fJ, an incoming spin tends to be oriented conversely to
the majority orientation of its nearest neighbors in the
cluster. This results in an antiferromagnetic ordering of
the spins in the clusters. The two components are, howev-
er, equally distributed in the cluster [28].

On the contrary, for positive values of BJ, a ferromag-
netic ordering is favored during the growth. Figure 4

FIG. 4. A branch of a magnetically controlled diffusion-
limited aggregation cluster grown from an up spin as seed and
for BJ =+ 1.0 and BH =0.
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shows a branch of a MDLA cluster grown from an up
spin as seed and for BJ =+1.0. Black and white dots
represent up and down spins, respectively. Some domains
or segments of branches are found in the same spin state
which is either up or down (ferromagnetic ordering). In
the following, we will study the possible domination of
one species over the other during the MDLA growth pro-
cess.

A. Numerical results on the line BH =0

In order to numerically investigate the competition be-
tween the two spin species, the magnetization M of
MDLA clusters have been measured during the growth
for various values of BJ. The global magnetization M of
one cluster is defined as the difference between the num-
ber of up and down spins in the cluster, normalized by
the mass N of the cluster.

Figure 5 shows the magnetization of N =3000 clusters
measured for various values of the competition parameter
BJ. The clusters have been grown from an up spin as
seed. Each point represents an average over 80 clusters.
It is seen that the magnetization m increases from zero to
unity around a value BJ,=1.510.1. If the clusters are
grown from a down spin as seed, it is easy to check that
the global magnetization falls from zero to —1 around
BJ. (not shown here). Above BJ., the species of the seed
wins the internal competition in the cluster, while below
BJ., the concentration of the two species are equal.
Thus, a spreading phenomenon occurs around BJ,.. A
similar behavior was observed in the MEM growth pro-
cess [18].

Figure 6 shows the evolution of the global magnetiza-
tion with the mass N of MDLA clusters on a semilog plot
for various values of BJ. Each dot represents an average
over 20 clusters grown from o,=+1. A decrease of M
with N is seen for all finite BJ values. The M (N) data de-
crease more slowly than an exponential law for large N
values. Thus, only the earlier stages of the growth are
dominated by the spreading of the seed component.

The critical value BJ,, where the magnetization
presents a marked variation and, thus, where a spreading
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FIG. 5. Magnetization of MDLA clusters of 3000 spins
grown without field from an up spin as seed as a function of the
competition or coupling parameter BJ.
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FIG. 6. The evolution of the global magnetization M with
the mass N of MDLA clusters grown form an up spin as seed
and for various values of the parameter BJ.

phenomenon seems to occur is found to be cluster mass
dependent. The “critical transition” value BJ, is shown in
Fig. 7 as a function of the mass N of the clusters below
N =3000 on a semilog plot. The 8J, value was numeri-
cally estimated to be the BJ value for which the M (BJ)
curve crosses the horizontal line of equation M =0 ,/20.
A logarithmic dependence

BJ, ~1n(N) 2

is found like for the magnetic Eden model [18]. The same
logarithmic dependence is found if BJ, is taken as the
value at which M (BJ) has an inflection point.

The gyration radii R,(N) and R;(N ) for, respectively,
the cluster and the up component are found to be numeri-
cally equivalent, implying that D,=D f+ for these clus-
ters. The fractal dimension D, of N =3000 MDLA clus-
ters are presented in Fig. 8 as a function of the coupling
parameter 8J. Each dot represents an average over 80
clusters. In spite of the competition between both kinds
of entities, the clusters are fractal-like because the motion
of the diffusing spins is still Brownian. The fractal dimen-
sion D/ varies slowly from 1.7240.01 to 1.70£0.01 with

11 PR TR |

500 1000 2000 3000 4000
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FIG. 7. The logarithmic behavior of the critical value BJ. as
a function of the size (or mass) N of the clusters.
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FIG. 8. Fractal dimension D, of MDLA clusters of 3000
spins grown without field from an up spin as seed as a function
of the coupling BJ.

[BJ. This slight decrease was already explained in the pre-
vious section as due to BJ favoring the growth on the tip
sites. A significant drop of D, down to 1.69+0.01 is,
however, clearly marked around the same magnetization
critical value BJ,~1.51+0.1. It was not expected that the
internal magnetic “critical”” phenomena occurring at J,
could lead to a change in the geometry of the overall
cluster shape at exactly the same BJ,_ for such finite-size
systems.

B. Discussion

The MDLA model generates fractal-like structures
similar to the branched DLA ones. As for DLA, the
growth is controlled by the Brownian motion of the
diffusing entities. The growth is favored on the extremi-
ties of the branches, which are better exposed to the in-
coming spins. Thus, the competition between both kinds
of entities takes place at the tip of the branches and is
only driven by the coupling parameter BJ (in absence of
the external field).

During the earlier stages of the growth of a magneti-
cally controlled DLA cluster, the competition is driven
by the extension of branches of the seed species. When
the size of these branches becomes greater than a charac-
teristic “coherence” length £(BJ), the other spin species
infects some extremity of the branches and some segment
grows with a different spin species. The global magneti-
zation M of the cluster falls rapidly to zero. A few steps
later, the size of these segments reaches the characteristic
length &(BJ) and they can become also infected. This
leads to cluster branches composed of an alternance of
+1 and — 1 segments having a size of the order of £.

If we consider that £ is proportional to exp(BJ), the
above considerations impose for a segment of mass N, the
following relation:

E~exp(BJ)~N}/H . (3)

At BJ., N~N, such that the logarithmic behavior of

BJ.(N) found numerically in Fig. 7 is recovered. More-
over, the slope of the BJ, vs In(N) line in Fig. 7 gives
1/u. The critical exponent p characterizes how the size
of the up or down segments scales with their mass N;.
From Eq. (3) and the slope of Fig. 7, we have found that
p£=1.2+0.1 and seems to be N independent for the
finite-size clusters studied so far here. This u value is also
lower than the minimum of D ((3J) of Fig. 8.

Thus, the MDLA clusters are fractal-like with a fractal
dimension D,=1.7 approximately independent of BJ
without field. These clusters are also divided in segments
with a characteristic coherence length &, which scales as
~N}H where u~1.2.

V. CONCLUSION

The magnetically controlled DLA (MDLA) model
simulates the aggregation of particles with an internal de-
gree of freedom, taking here, for example, two states.
This generalization of DLA is geometrically, physically,
and chemically relevant and leads to different competing
growth processes and morphologies which are herein dis-
tributed over 24 regions of a phase diagram.

The internal properties of the clusters show that the
earlier stages of the growth are dominated by the spin
species of the seed but later on the various growth proba-
bilities lead to different behaviors. This finite size process
is found to imply a drastic nonexpected change of both
physical and geometrical properties of the cluster during
the growth history. From the spreading of both com-
ponents in the clusters, we have also learned that the
MDLA clusters can be divided into segments of up and
down spin species having a characteristic length £. This
characteristic length scales as a simple power law of the
mass of the segments with a critical exponent u~1.2.

A word is in order on the finite-size effects. The con-
tinuously varying fractal dimension with a sharp
minimum at BJ, could be considered to be an effect of
large error bars due to the finiteness of the investigated
systems. For moderate sticking probabilities (or large
BH), the local structure seems to be compact at low N but
has a DLA structure at large N. We consider that this
case requires further investigations on larger systems.
However, in the SH =0 case, the range of sticking proba-
bilities has been well investigated and the results seem to
indicate a real transitionlike feature at finite NV for a finite
BJ. Self-similarity should strictly occur at infinite N.
Our MDLA clusters are as in [9] only prefractal approxi-
mations [24]. The present work seems to indicate the in-
terest in examining whether DLA generalizations have a
crossover to self similarity for relatively small clusters
and whether such a crossover occurs at the same BJ, or
N (and BH,) values for different properties. See in this
respect Ref. [14], where 100 million particle clusters were
investigated. However, notwithstanding the above,
finite-size systems are of interest for themselves because
many natural systems are finite.

Further simulations can still be made. In particular,
each boundary line of the phase diagram (see Fig. 2)
shonld be examined. However, this leads to seven
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different cases and seven plots of D, vs BH or BJ, i.e.,
“several” numerical cases which are outside the scope of
this paper. Finally, the relevant quantities allowing one
to indicate which universality class or classes, are covered
by such a MDLA and their obvious extensions should be
determined through kinetic exponent evaluation [1].
This likely opens up a large field of investigations from a
theoretical point of view, and also introduces much
greater flexibility in modeling and understanding experi-
mental observations.
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